Chapter 6 Quadrilaterals

Section 7
Areas of Triangles and Quadrilaterals

GOAL 1: Using Area Formulas

You can use the postulates below to prove several area theorems.

AREA POSTULATES

POStulate 22 Area of a Square Postulate

The area of a square is the square of the length of its side, or $A=s^{2}$.
postulate 23 Area Congruence Postulate
If two polygons are congruent, then they have the same area.

postulate 24 Area Addition Postulate

The area of a region is the sum of the areas of its nonoverlapping parts.

AREA THEOREMS

THEOREM 6.20 Area of a Rectangle

The area of a rectangle is the product of its base and height.

$$
A=b h
$$

theorem 6.21 Area of a Parallelogram

The area of a parallelogram is the product of a base and its corresponding height.

$$
A=b h
$$

theorem 6.22 Area of a Triangle

The area of a triangle is one half the product of a base and its corresponding height.

$$
A=\frac{1}{2} b h
$$

You can justify the area formulas for triangles and parallelograms as follows.

The area of a parallelogram is the area of a rectangle with the same base and height.

The area of a triangle is half the area of a parallelogram with the same base and height.

Example 1: Using the Area Theorems
Find the area of parallelogram $A B C D$
Find the a ea o of parallel oral

$$
\begin{aligned}
& 12 \times 12 \\
& 144 u^{2}
\end{aligned}\left\{\begin{array}{l}
16 \times 9 \\
144 u^{2}
\end{array}\right.
$$

Example 2: Finding the Height of a Triangle

Rewrite the formula for the area of a triangle in terms of h. Then use your formula to find the height of a triangle that has an area of 12 and a base length of 6 .

Example 3: Finding the Height of a Triangle

A triangle has an area of 52 square feet and a base of 13 feet. Are all triangles with these dimensions congruent?
**just b/c 2 shapes have the same area, does not mean they're congruent

There are many triangles with these dimensions. Some are shown below.

GOAL 2: Areas of Trapezoids, Kites, and Rhombuses

THEOREMS

theorem 6.23 Area of a Trapezoid

The area of a trapezoid is one half the product of the height and the sum of the bases.

$$
A=\frac{1}{2} h\left(b_{1}+b_{2}\right)
$$

theorem 6.24 Area of a Kite

The area of a kite is one half the product of the lengths of its diagonals.

$$
A=\frac{1}{2} d_{1} d_{2}
$$

theorem 6.25 Area of a Rhombus

The area of a rhombus is equal to one half the product of the lengths of the diagonals.

$$
A=\frac{1}{2} d_{1} d_{2}
$$

You will justify Theorem 6.23 in Exercises 58 and 59. You may find it easier to remember the formula/theorem the following way.

$$
\text { Area }=\begin{gathered}
\text { Length of } \\
\text { Midsegment }
\end{gathered} \cdot \text { Height }
$$

Example 4: Finding the Area of a Trapezoid

Find the area of trapezoid WXYZ.

$$
\begin{array}{r}
R-\frac{1}{2} h\left(D_{1}+h_{2}\right) \\
\frac{1}{2}(4)(3+\square) \\
\frac{1}{2}(4)(\square)
\end{array}
$$

The diagram at the right justifies the formulas for the areas of kites and rhombuses.
The diagram shows that the area of a kite is half the area of the rectangle whose length and width are the lengths of the diagonals of the
 kite. The same is true for a rhombus.

$$
A=\frac{1}{2} d_{1} d_{2}
$$

Example 5: Finding the Area of a Rhombus

Use the information given in the diagram to find the area of rhombus ABCD.

Example 6: Finding Areas

Find the area of the roof. G, H, and K are trapezoids and J is a triangle. The hidden back and left sides of the roof are the same as the front and right sides.

G: $\frac{1}{2}(15)(20+30)=375 \times 2=750$
H: $\frac{1}{2}(15)(42+50)=690 \times 2=1380$
к: $\frac{1}{2}(12)(30+42)=432 \times 2=864$
J: $\frac{1}{2}(20)(9)=90 \times 2=180$
Total: $750+1380+864+180=3174$ square feet

EXIT SLIP

